3-1,4-Glycanase from Cellulomonas fimi
نویسندگان
چکیده
The 0-1,4-glycanase Cex of the gram-positive bacterium Cellulomonas fimi is a glycoprotein comprising a C-terminal cellulose-binding domain connected to an N-terminal catalytic domain by a linker containing only prolyl and threonyl (PT) residues. Cex is also glycosylated by Streptomyces lividans. The glycosylation of Cex produced in both C. fimi and S. lividans protects the enzyme from proteolysis. When the gene fragments encoding the cellulose-binding domain of Cex (CBDCex), the PT linker plus CBDCex (PT-CBDcex), and the catalytic domain plus CBDCeX of Cex were expressed in S. lividans, only PT-CBDCex was glycosylated. Therefore, all the glycans must be 0 linked because only the PT linker was glycosylated. A glycosylated form and a nonglycosylated form of PT-CBDCex were produced by S. lividans. The glycosylated form of PT-CBDCex was heterogeneous; its average carbohydrate content was -10 mol of D-mannose equivalents per mol of protein, but the glycans contained from 4 to 12 a-D-mannosyl and a-D-galactosyl residues. Glycosylated Cex from S. lividans was also heterogeneous. The presence of glycans on PT-CBDCex increased its affinity for bacterial microcrystalline cellulose. The location of glycosylation only on the linker region of Cex correlates with the properties conferred on the enzyme by the glycans.
منابع مشابه
Visualization of Nanofibrillar Cellulose in Biological Tissues Using a Biotinylated Carbohydrate Binding Module of β-1,4-Glycanase.
Nanofibrillar cellulose is a very promising innovation with diverse potential applications including high quality paper, coatings, and drug delivery carriers. The production of nanofibrillar cellulose on an industrial scale may lead to increased exposure to nanofibrillar cellulose both in the working environment and the general environment. Assessment of the potential health effects following e...
متن کاملCalcium binding by the N-terminal cellulose-binding domain from Cellulomonas fimi beta-1,4-glucanase CenC.
The interaction of the N-terminal cellulose-binding domain, CBDN1, from Cellulomonas fimi beta-1,4-glucanase CenC with calcium was investigated using NMR spectroscopy and calorimetry. CBDN1 binds a single calcium ion with an equilibrium association constant of approximately 10(5) M-1 at 35 degreesC and pH 6.0. Binding is exothermic (-42 +/- 2 kJ mol-1) under these conditions and is accompanied ...
متن کاملPrecise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis.
An endo-beta-1,4-glucanase (CenA) and an exo-beta-1,4-glucanase (Cex) were prepared from Escherichia coli expressing recombinant DNA of the cellulolytic bacterium Cellulomonas fimi. Purification was facilitated by the high affinities of these enzymes for cellulose. An extracellular C. fimi protease cleaved both enzymes in vivo in a highly specific manner. The affinity of the parent enzyme for c...
متن کاملProteomic Analysis of the Secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482
The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of ...
متن کاملGlycosynthase-based synthesis of xylo-oligosaccharides using an engineered retaining xylanase from Cellulomonas fimi.
Glycosynthases are synthetic enzymes derived from retaining glycosidases in which the catalytic nucleophile has been replaced. The mutation allows irreversible glycosylation of sugar acceptors using glycosyl fluoride donors to afford oligosaccharides without any enzymatic hydrolysis. Glycosynthase technology has proven fruitful for the facile synthesis of useful oligosaccharides, therefore the ...
متن کامل